First Bent-Core Nematic Liquid Crystal Elastomer: Characterization and Giant Flexoelectric Response

J. Harden1, M. Chambers1,2, R. Verduzco3, P. Luchette1, P. Palffy-Muhoray1, J.T. Gleeson2, S. Sprunt2, A. Jákli1

Contact: jharden@kent.edu
or ajakli@kent.edu

1Liquid Crystal Institute, Kent State University, Kent OH 44242, USA

2Department of Physics, Kent State University, Kent OH 44242, USA

3Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
Purpose

• Synthesis and Production of Bent-Core Nematic Liquid Crystalline Elastomers (BCLCE) see Raphael Verduzco et al. talk from Thursday Bent-Core LC Elastomers and Side-Group LC Polymers Using Reactive Bent-Core Mesogens

• Study the Properties of a BCLCE Including Giant Flexoelectricity ($e_3 \sim 30 \text{nC/m}$)

• Create a simple demonstration of a Giant Flexoelectric Generator
\[\vec{P}_f = e_1 \vec{n} \text{ div } \vec{n} + e_3 \text{ curl } \vec{n} \times \vec{n} \]

Macroscopic Demonstration of Alignment to a Curved Surface

Photo by James Maxwell
Discovery of Giant Flexoelectricity in Bent-Core Nematic Liquid Crystals

1000 Times Bigger Than Rod Like Molecules

100 Times Bigger Than Predicted for Bent-Core

Our answer

Clusters are in 87 phase (polarization* and layer modulated**) structures

Note: this has both in layer and out of layer parts, due to SmCG structure with out of layer polarization.

Length scale:
\(~50\text{nm}\)

Clusters oriented in polarization direction according to the bend direction, but this orientation strongly depend on bend/electric field.

A. Jákli, J. Harden, J. Gleeson, S. Sprunt, 12th International Conference on Ferroelectric Liquid Crystals 2009
Why make a BCLCE?

- Solves the Leaking Problem (Material eventually pumps out of cell if it is fluid.)
- Solves the Shorting Out problem
- Lower and Wider Temperature Range
- We Love Bent Core Molecules!!!
Components of the BCLCE

See R. Verduzco talk for ILCEC 2009
Below T_{NI}

113°C

Polarizer at 0°

Above T_{NI}

130°C

Polarizer at 45°

$T_{NI} = 120°C$
Measuring Change of Length vs Temperature in Crossed Polarizers
Relative Length $\lambda = L/L_0$ vs Temperature ($^\circ$C)

- $a = 0.0800$
- $b = 109$

Equation:

\[y = 1 + a \times (b - x)^{1/3} \]
Measurement of the Flexoelectric Coefficient
Measurement of the Flexoelectric Coefficient
Video of Giant Flexoelectric Effect

http://www.lci.kent.edu/PI/Jakli/gallery.html
Oscilloscope with Flexing by Hand

![Oscilloscope Graph]

- Voltage (V)
- Time (seconds)

http://www.e-lc.org/presentations/docs/2009_10_02_11_26_51
Summary

Giant Flexoelectric Polarization exists for BCLCE ~30nC/m
- Control Groups and Isotropic Phase show no such effect

~4mm x 4mm x 0.3mm can produce 20mV

Currently plan to work on converse effect where a field
will provide a cylindrical curvature

http://www.e-lc.org/presentations/docs/2009_10_02_11_26_51
Acknowledgements

Work is partially funded by ONR under grant N00014-07-1-0440) and by the NSF under DMR-0606160.

Oak Ridge National Laboratory's Center for Nanophase Materials Sciences is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

New Liquid Materials Facility, Kent State University